Beyond the diffusion limit: Water flow through the empty bacterial potassium channel.

نویسندگان

  • Sapar M Saparov
  • Peter Pohl
چکیده

Water molecules are constrained to move with K+ ions through the narrow part of the Streptomyces lividans K+ channel because of the single-file nature of transport. In the presence of an osmotic gradient, a water molecule requires <10 ps to cross the purified protein reconstituted into planar bilayers. Rinsing K+ out of the channel, water may be 1,000 times faster than the fastest experimentally observed K+ ion and 20 times faster than the one-dimensional bulk diffusion of water. Both the anomalously high water mobility and its inhibition observed at high K+ concentrations are consistent with the view that liquid-vapor oscillations occur because of geometrical confinements of water in the selectivity filter. These oscillations, where the chain of molecules imbedded in the channel (the "liquid") cooperatively exits the channel, leaving behind a near vacuum (the "vapor"), thus far have only been discovered in hydrophobic nanopores by molecular dynamics simulations [Hummer, G., Rasaiah, J. C. & Noworyta, J. P. (2001) Nature 414, 188-190; and Beckstein, O. & Sansom, M. S. P. (2003) Proc. Natl. Acad. Sci. USA 100, 7063-7068].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy study at different solvents for potassium Channel Protein by Monte Carlo, Molecular and Langevin Dynamics Simulations

Potassium Channels allow potassium flux and are essential for the generation of electric current acrossexcitable membranes. Potassium Channels are also the targets of various intracellular controlmechanisms; such that the suboptimal regulation of channel function might be related to pathologicalconditions. Realistic studies of ion current in biologic channels present a major challenge for compu...

متن کامل

A numerical study of the effect of channel spacers on the performance of cross-flow forward osmosis membrane modules

In this paper, we perform two-dimensional simulations of cross-flow forward osmosis (FO) membrane modules in the presence of draw and feed channel spacers. For this purpose, the equations corresponding to the conservation of mass, momentum, and convection-diffusion for the mass fraction of solute are solved using a commercial finite volume flow solver. We consider six configurations of channel ...

متن کامل

Fixed Bed Adsorption Studies of Rhodamine B Dye Using Oil Palm Empty Fruits Bunch Activated Carbon

Global environmental pollution challenges can be alleviated if proper disposal and conversion of wastes is promoted. An attempt of converting waste to wealth was made in this study by converting oil palm empty fruits bunch to activated carbon through chemical activation with potassium hydroxide which was used for adsorption of Rhodamine B dye from waste water. Fixed-bed column adsorption system...

متن کامل

Performance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis

Forward osmosis (FO) has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2) and potassium bicarbonate (KHCO3) as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments we...

متن کامل

Simulation of Subcooled Flow Boiling Occurring in Internal Combustion Engine Water Jacket by Numerical Modeling in a Channel with Hot Spot

Boiling heat transfer always has been proposed as a solution for enhancing heat transfer between the fluid and solid surfaces. Subcooled flow boiling is one of the mechanisms that occur in Internal Combustion Engine water jacket in which high amounts of heat is transferred. In this research, it has been tried to simulate subcooled flow boiling in a geometry similar to coolant channel inside the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 14  شماره 

صفحات  -

تاریخ انتشار 2004